Peran Kecerdasan Buatan (AI) Dalam Meningkatkan Audit Forensik Untuk Mendeteksi Kecurangan: Tinjauan Literatur Sistematis

Authors

  • Icha Amalia Fernanda Universitas Airlangga
  • Habiburrochman Universitas Airlangga

DOI:

10.33395/owner.v9i4.2825

Abstract

Forensic auditing increasingly employs artificial intelligence (AI), yet practice faces data, transparency, and institutional-readiness gaps, especially in developing countries. This review conducts a Systematic Literature Review (2015–2025) across Scopus, Web of Science, and SINTA: 150 records screened, 30 included and thematically synthesized via manual coding. Findings answer the RQs through three pathways: anomaly detection in ledgers/transactions, text analysis of reports–claims–communications, and network analysis of supplier–contract relations, strengthened by RPA, immutable logging, and visual analytics; together these reduce false positives, speed investigations, and reinforce evidence auditability. Practically, we map use-cases to implementable transparency controls and propose a staged adoption roadmap for SAIs, anti-corruption agencies, and audit firms. Theoretically, we outline an ethics-regulatory adoption frame. Novelty: this review reframes AI as an epistemic instrument and introduces the Integrated Forensic-AI Transparency Stack (IFATS) to operationalize auditability beyond a finance-centric lens, with emphasis on developing-country contexts.

Downloads

Download data is not yet available.

        Plum-X Analityc

References

Abid, H. M. R., Aslam, S., Alwan, N., & Khalid, N. (2025). Current readiness on food fraud risk mitigation in developing countries: a review. In Agriculture & Food Security. Springer. https://doi.org/10.1186/s40066-025-00528-1

Adejumo, A. P., & Ogburie, C. P. (2025). Forensic accounting in financial fraud detection: Trends and challenges. Journal of Science and Research. https://doi.org/10.30574/ijsra.2025.14.3.0815

Ali, H. R., & Hafidh, A. (2024). Artificial Intelligence Integration in Forensic Audit: A Study from Pakistan. In International Journal of Management and Economics (pp. 134–138).

Ali, Q., Parveen, S., Aspiranti, T., Nurhayati, N., & Rusgianto, S. (2024). Barriers to the adoption of Islamic banking: a bibliometric analysis. International Journal of Management and Economics. https://doi.org/10.1108/IJOES-01-2023-0001

Alsayegh, M. F., Rahman, R. A., & Homayoun, S. (2020). Corporate economic, environmental, and social sustainability performance transformation through ESG disclosure. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/su12093910

Al-lawati, H. D. (2025). Strategic Adoption of AI for Fraud Prevention in Financial Institutions?: A Systematic Literature Review. Int J Risk Fraud Reliab, Vol 1, Issue 1, August 2025 http://dx.doi.org/10.2139/ssrn.5262760

Almufadda, A., & Almezeini, N. A. (2022). Artificial intelligence applications in the auditing profession: a literature review. Journal of Emerging Technologies in Accounting (2022) 19 (2): 29–42. https://doi.org/10.2308/JETA-2020-083

Ashrafi, D. M. (2023). Managing consumers’ adoption of artificial intelligence-based financial robo-advisory services: A moderated mediation. Journal of Indonesian Economy and Business, Vol. 38, No. 3, 2023

Aslam, F., Hunjra, A. I., Ftiti, Z., Louhichi, W., & Shams, T. (2022). Insurance fraud detection: Evidence from artificial intelligence and machine learning. Research in International Business and Finance, 62, 101745.

Celestin, M., & Vanitha, N. (2019). Artificial intelligence in fraud detection: Are traditional auditing methods outdated. In 2nd International Conference on Recent Trends in Arts, Science, Engineering & Technology (Vol. 3, No. 2, pp. 180-186). https://doi.org/10.5281/zenodo.16152007

Haji, S. H., & Ameen, S. Y. (2021). Attack and anomaly detection in iot networks using machine learning techniques: A review. In Asian J. Res. Comput. DOI: 10.9734/AJRCOS/2021/v9i230218

Hosein, M., Rizi, P., Amin, S., & Seno, H. (2022). Internet of Things Review article A systematic review of technologies and solutions to improve security and privacy protection of citizens in the smart city. Internet of Things, 20(August), 100584. https://doi.org/10.1016/j.iot.2022.100584

Hossain, M. Z. (2023). Emerging trends in forensic accounting: Data analytics, cyber forensic accounting, cryptocurrencies, and blockchain technology for fraud investigation and prevention. SSRN Electronic Journal. https://dx.doi.org/10.2139/ssrn.4450488

Ilori, O., Nwosu, N. T., & Naiho, H. N. N. (2024). Optimizing Sarbanes-Oxley (SOX) compliance: Strategic approaches and best practices for financial integrity: A review. Journal of Advanced Research and Reviews. https://doi.org/10.30574/wjarr.2024.22.3.1728

Jaya, I., & Bhuana, K. W. (2024). Depth interviews of accounting and artificial intelegance: Sustainability of accountant in indonesia. In Calitatea. DOI: 10.47750/QAS/25.200.01

Kaur, A., Hoshyar, A. N., Saikrishna, V., Firmin, S., & Xia, F. (2024). Deepfake video detection: Challenges and opportunities. Artificial Intelligence Review. https://doi.org/10.1007/s10462-024-10810-6

Khawaja, N., & Hamdan, A. (2023). The moderation effect of digital leadership on the relationship between artificial intelligence and accounting profession: A review. Emerging Trends and Innovation in Business and Technology. https://doi.org/10.1007/978-981-99-6101-6_60

Kholiza, N. L. (2024). Pengaruh religiusitas dan pengetahuan akuntansi syariah terhadap minat mahasiswa akuntansi syariah IAIN Metro Lampung berkarir di lembaga keuangan. Jurnal Ilmiah Manajemen, Ekonomi, dan Akuntansi VOL 2 No. 2 (2022). https://doi.org/10.55606/jurimea.v2i2.153

Longinus, C. (2024). Artificial Intelligence for detecting and preventing procurement fraud. International Journal of Business Ecosystem Strategy, 6(1), 63–73. 10.36096/ijbes.v6i1.477 (DOI)

Mangala, D., & Soni, L. (2023). A systematic literature review on frauds in banking sector. In Journal of Financial Crime. https://doi.org/10.1108/JFC-12-2021-0263

Moll, J., & Yigitbasioglu, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. The British accounting review, 51(6), https://doi.org/10.1016/j.bar.2019.04.002

Naseer, K., Ahmed, H. N., & Author, C. (2025). Journal of Management and Informatics (JMI). 4(1), 706–721. https://doi.org/10.51903/jmi.v4i1.168

Nikkel, B. (2020). Fintech forensics: Criminal investigation and digital evidence in financial technologies. Forensic Science International: Digital Investigation. https://doi.org/10.1016/j.fsidi.2020.200908

Oguntibeju, O. O., Adonis, M., & Alade, J. (2025). Systematic Review of Real-Time Analytics and Artificial Intelligence Frameworks for Financial Fraud Detection. September 2024. https://doi.org/10.17148/IJARCCE.2024.13920

Pasham, S. D. (2022). A Review of the Literature on the Subject of Ethical and Risk Considerations in the Context of Fast AI Development. International Journal of Modern Computing, 5(1), 24-43.

Pasham, S. D. (2023). The function of artificial intelligence in healthcare: a systematic literature review. International Journal of Acta Informatica, 2(1), 32-42.

Purwaamijaya, B. M., & Prasetyo, Y. (2022). The effect of artificial Intelligence (AI) on human capital management in Indonesia. Jurnal manajemen dan kewirausahaan, 10(2), 168-174. https://doi.org/10.26905/jmdk.v10i2.9130

Ramzan, S., & Lokanan, M. (2024). The application of machine learning to study fraud in the accounting literature. In Journal of Accounting Literature. https://doi.org/10.1108/jal-11-2022-0112

Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, S. (2021). Robotic process automation and artificial intelligence in industry 4.0–a literature review. Procedia Computer Science, 181, 51-58. https://doi.org/10.1016/j.procs.2021.01.104

Rizi, M. H. P., & Seno, S. A. H. (2022). A systematic review of technologies and solutions to improve security and privacy protection of citizens in the smart city. Internet of Things, 20, 100584. https://doi.org/10.1016/j.iot.2022.100584

Romero Carazas, R. (2024). Forensic auditing and the use of artificial intelligence: A bibliometric analysis and systematic review in Scopus between 2000 and 2024. Heritage and Sustainable Development, 6(2), 415. DOI:10.37868/hsd.v6i2.626

Saifudin, S., Januarti, I., & Purwanto, A. (2025). The Role of Artificial Intelligence in the Audit Process and How to Fraud Detections: A Literature Outlook. Journal of Ecohumanism, 4(1), 4185-4203. DOI: https://doi.org/10.62754/joe.v4i1.6301

Soltani, M., Kythreotis, A., & Roshanpoor, A. (2023). Two decades of financial statement fraud detection literature review; combination of bibliometric analysis and topic modeling approach. Journal of Financial Crime, 30(5), 1367-1388. https://doi.org/10.1108/jfc-09-2022-0227

Tan, E., Jean, M. P., Simonofski, A., Sabbe, M., Bechoux, L., & Willem, P. (2023). Artificial intelligence and algorithmic decisions in fraud detection?: An interpretive structural model. https://doi.org/10.1017/dap.2023.22

Yazici, Y. (2020). A PPROACHES TO F RAUD D ETECTION ON C REDIT C ARD T RANSACTIONS USING. 235–244. https://doi.org/10.5121/csit.2020.101018

Zemánková, A. (2019). Artificial intelligence and blockchain in audit and accounting: Literature review. wseas Transactions on Business and Economics, 16(1), 568-581. https://doi.org/10.1016/j.accinf.2022.100598

Downloads

Published

2025-10-28

How to Cite

Fernanda, I. A., & Habiburrochman, H. (2025). Peran Kecerdasan Buatan (AI) Dalam Meningkatkan Audit Forensik Untuk Mendeteksi Kecurangan: Tinjauan Literatur Sistematis. Owner : Riset Dan Jurnal Akuntansi, 9(4), 3430-3442. https://doi.org/10.33395/owner.v9i4.2825